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Abstract. Quantum Lie algebrasLq (g) are non-associative algebras which are embedded into
the quantized enveloping algebrasUq(g) of Drinfeld and Jimbo in the same way as ordinary
Lie algebras are embedded into their enveloping algebras. The quantum Lie product onLq (g)

is induced by the quantum adjoint action ofUq(g). We construct the quantum Lie algebras
associated toUq(gln) andUq(sln). We determine the structure constants and the quantum root
systems, which are now functions of the quantum parameterq. They exhibit an interesting
duality symmetry underq ↔ 1/q.

1.

The theory of classically integrable systems relies heavily on Lie algebras and root systems.
The discovery [1, 2] of the quantum deformationsUq(g) of the universal enveloping algebras
U(g) of Lie algebrasg has led to major advances in the theory of quantum integrable
systems. Many constructions in the theory of classically integrable systems do, however,
require the use of Lie algebras rather than their enveloping algebras. An example of this is
the values of the conserved charges on the solitons in affine Toda theory [3].

To generalize these constructions to the quantum level one would like to have the concept
of a quantum Lie algebraLq(g) which is related to the quantized enveloping algebraUq(g)

in the same manner as a Lie algebra is related to its enveloping algebra. Such objects were
introduced in [4] and will be reviewed below. In this paper we construct quantum Lie
algebras associated togln andsln.

2.

The quantized enveloping algebraUq(sln) is the unital associative algebra overC((t)), the
field of fractions for the ring of formal power series in the indeterminatet , with generators
x±

i , hi , (i = 1, . . . , n − 1) and relations

[hi, hj ] = 0 [hi, x
±
j ] = ±aij x

±
j [x+

i , x−
j ] = δij

qhi − q−hi

q − q−1

x±
i x±

i x±
j − (q + q−1)x±

i x±
j x±

i + x±
j x±

i x±
i = 0 (|i − j | = 1)

x±
i x±

j = x±
j x±

i (|i − j | > 2).

(1)
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where we have definedq = et . Here (aij ) denotes the Cartan matrix of typeAn−1, i.e.
aii = 2, aij = −1 (|i − j | = 1), = 0 (otherwise). We defineUq(gln) by adjoining to
Uq(sln) an elementhn which belongs to the centre. The Hopf algebra structure is given by
the co-product1, the antipodeS and the co-unitε:

1(hi) = hi ⊗ 1 + 1 ⊗ hi 1(x±
i ) = x±

i ⊗ q−hi/2 + qhi/2 ⊗ x±
i

S(hi) = −hi S(x±
i ) = −q∓1x±

i ε(hi) = ε(x±
i ) = 0.

(2)

Note that our conventions here differ from those of [4] byq ↔ q−1 in order to conform to
[5, 7, 8]. The adjoint action ofUq(g) on itself is given by, using Sweedler’s notation [6],

x ◦ y =
∑

x(1)yS(x(2)) x, y ∈ Uq(g). (3)

The Cartan involutionθ is the algebra automorphism defined by

θ(x±
i ) = x∓

i θ(hi) = −hi. (4)

It is a co-algebra anti-automorphism, i.e.1 · θ = (θ ⊗ θ) · 1T and ε · θ = θ · ε, and it
satisfiesS · θ = θ · S−1. There is also an involutive algebra anti-automorphism† : a 7→ a†

defined by

(x±
i )† = x∓

i (hi)
† = hi (5)

which is a co-algebra automorphism and satisfiesS ·† = † ·S−1. The diagram automorphism
τ , defined by

τ(x±
i ) = −x±

n−i τ (hi) = hn−i (i 6 n − 1) τ (hn) = −hn (6)

extends to a Hopf-algebra automorphism.

3.

A central concept in the theory of quantum Lie algebras [4] isq-conjugation which inC((t))

mapst 7→ −t , i.e. q 7→ q−1.

Definition 1. (a) q-conjugation ∼: C((t)) → C((t)), a 7→ ã is the field automorphism
defined byt̃ = −t .

(b) Let M, N be C((t))-modules. A mapφ : M → N is q-linear if φ(λa) = λ̃φ(a),
∀a ∈ M, λ ∈ C((t)).

(c) Let A, B be algebras overC((t)). A q-linear mapφ : A → B is an algebraq-
homomorphismif it respects the algebra product, i.e. if∀a, a′ ∈ A, φ(aa′) = φ(a)φ(a′).
q-anti-isomorphisms,q-automorphisms, etc, are defined analogously.

Note the analogy between the concepts ofq-conjugation and complex conjugation and
betweenq-linear maps and anti-linear maps.

Definition 2. q-conjugation on Uq(g) is the algebraq-automorphism∼: Uq(g) → Uq(g)

that extendsq-conjugation onC((t)) by acting as the identity on the generatorsx±
i andhi .

This definition is consistent because the relations (1) are invariant uderq 7→ q−1. q-
conjugation is a co-algebra q-anti-automorphism ofUq(g), i.e. ε· ∼=∼ ·ε, 1· ∼=∼ ·1T

and it satisfiesS· ∼=∼ ·S−1. We define a tilded Cartan involution and a tilded antipode as
compositions

S̃ =∼ ·S θ̃ =∼ ·θ (7)

These behave well with respect to the adjoint action:

θ̃ (a) ◦ θ̃ (b) = θ̃ (a ◦ b) S̃(a) ◦ S̃(b) = S̃(S−1(a) ◦ b) ∀a, b ∈ Uq(g). (8)
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4.

A Lie algebrag is naturally embedded into its universal enveloping algebraU(g). It forms a
subspace of the enveloping algebra which under the adjoint action transforms in the adjoint
representation. The Lie bracket ong is given by the restriction of the adjoint action of
U(g). This idea is extended to the quantum case by the following definition, introduced in
[4] (and slightly modified to incorporate also the non-simple Lie algebragln).

Definition 3. A quantum Lie algebraLq(g) associated to a finite-dimensional complex Lie
algebrag is a◦-submodule ofUq(g), endowed with thequantum Lie bracket[a ◦ ]

¯
= a ◦ b,

and which has the properties:
(1) Lq(g) has the same dimension asg,
(2) Lq(g) is a deformation ofg, i.e. the isomorphismUq(g)/tUq(g) ∼= U(g) takes

Lq(g)/tLq(g) isomorphically ontog ⊂ U(g),
(3) Lq(g) is invariant under̃θ , S̃ andτ .

Remarks. (1) It was shown in [4] that if at least one◦-module satisfying the first two
properties exists, then there exist infinitely many and out of these one can always choose
at least one also statisfying the last property. The last property plays a crucial role in the
investigations into the general structure of quantum Lie algebras.

(2) If g is simple then it has been shown in [9] that all quantum Lie algebrasLq(g)

associated tog are isomorphic.

5.

We will now show how to construct a quantum Lie algebraLq(gln) starting from an
expression for the universalR-matrix of Uq(gln). Becausegln is not simple the universal
R-matrix is not unique and therefore the expressions for the quantum Lie algebra generators
which we obtain will also not be unique. Our construction is based on the results of [7, 8].
We introduce the elementsEij ∈ Uq(gln) defined recursively by

Eij = EikEkj − qEkjEik (i < k < j or i > k > j) Ei,i±1 = x±
i

Eii − Ei+1,i+1 = hi (i < n)

n∑
i=1

Eii = hn.
(9)

Let π denote the vector representation ofgln. Thenπ(Eij ) = eij ∀i, j , whereeij denotes the
matrix (δiaδjb)16a,b6n. We follow the convention of [7, 8] and define the dual representation
π∗ not with the antipode, as would be standard, but asπ∗(a) := πt(γ (a)) whereγ is the
anti-automorphism defined byγ (x±

i ) = −x±
i , γ (hi) = −hi . Rewriting a result by Jimbo

[5] one finds that there exists a universalR-matrix R for Uq(gln) such that

(π∗
ij ⊗ 1)(R) = δi6j q

i−j Êij (π∗
ji ⊗ 1)(RT ) = δi6j q

i−j Êji (10)

where we have defined

Êij =
{

−(q − q−1)q−(Eii+Ejj −1)/2Eij i 6= j

q−Eii i = j .
(11)
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(We use a generalized Kronecker delta notation, e.g.δi6j = 1 if i 6 j , 0 otherwise.) It is
shown in [7, 8] that the elementsTij ∈ Uq(gln) defined by

Tij = qi(q − q−1)−1(δij − (π∗
ij ⊗ 1)(RT R))

= qi(q − q−1)−1

(
δij − q−i−j

∑
k6min(i,j)

q2kÊikÊkj

)
(12)

transform as the components of aπ ⊗ π∗ tensor operator, i.e. that

a ◦ Tij = Tkl(πki ⊗ π∗
lj )1(a) ∀a ∈ Uq(gln). (13)

The representationπ ⊗π∗ is isomorphic to the adjoint representation ofUq(gln). Classically
the Tij go over into thegln generatorsEij |q=1. Thus theTij span a◦-module satisfying all
requirements of definition 3 forLq(gln) except property 3.

This ◦-module also appears as the dual space to the space of left-invariant one-forms
in the framework of the bicovariant differential calculus on quantum groups (see e.g. [10])
and it is a special case of the braided matrix Lie algebras of Majid [11].

6.

The adjoint representation ofgl(n) is not irreducible. Correspondingly the◦-module
spanned by theTij decomposes into a one-dimensional module spanned by a CasimirC
and a(n2 − 1)-dimensional module spanned by elementsTij , where

C =
n∑

i=1

1 − q−2

q2n − 1
qiTii Tij = Tij − δij q

iC. (14)

7.

A second◦-module is spanned by the elementsτ(Tij ). They transform as follows:

a ◦ τ(Tij ) = τ(τ (a) ◦ Tij ) = τ(Tkl)(πki ⊗ π∗
lj )1(τ(a))

= τ(Tkl)(π
∗
k̄ı̄

⊗ πl̄̄ )1(a). (15)

(Repeated indices are summed over.) We have introduced the notationı̄ = n + 1 − i and
have used that1(τ(a)) = (τ ⊗ τ)1(a) and π∗

ij (a) = πı̄̄ (τ (a)). As a new basis in this
second module we choose

Vij := −τ(Tk̄l̄)(Rππ∗)lkij (16)

where

(Rππ∗)ijkl := (πik ⊗ π∗
j l)R

= δikδjl + δij δkl((q
−1 − 1)δik − (q − q−1)qk−iδi>k). (17)

The Vij transform in the same way as theTij :

a ◦ Vij = Vkl(R
−1
ππ∗)klsr ((π

∗
rp ⊗ πsq)1(a))(Rππ∗)qpij (18)

= Vkl(πki ⊗ π∗
lj )1(a) (19)

where we have used the intertwining property of theR-matrix. They also have the same
classical limit. Again we decompose into the(n2 − 1)-dimensional and the trivial module
generated byVij andB, respectively, where

B =
n∑

i=1

1 − q−2

q2n − 1
qiVii = −q−nτ (C) Vij = Vij − δij q

iB. (20)
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8.

Because theTij and theVij have the same transformation properties, their sums 1/2(Tij+Vij )

also generate a◦-module. This module contains an(n2 − 1)-dimensional submodule
generated byXij := 1

2(Tij + Vij ) which is τ -invariant:

τ(Xij ) = 1
2(τ (Tij ) − Tk̄l̄ (Rππ∗)lkij )

= −Xk̄l̄ (Rππ∗)lkij − 1
2τ(Tr̄ s̄ )(Rππ∗)srk̄l̄ (Rππ∗)lkij + 1

2τ(Tij )

= −Xk̄l̄ (Rππ∗)lkij . (21)

For the last equality we used that(Rππ∗)srk̄l̄ (Rππ∗)lkij = δr̄iδs̄j + (q−2n − 1)Pr̄s̄ij , where
P is the projector onto the one-dimensional orbit, and thatT , which lies in the(n2 − 1)-
dimensional module, vanishes when contracted withP . As basis vectors we choose

Xij = q(j−i−1)/2Xij (i 6= j = 1, . . . n)

Hi = Xii − q−1Xi+1,i+1 (i = 1, . . . , n − 1).
(22)

They satisfy

θ̃ (Xij ) = (−1)i+j+1Xji θ̃(Hi) = −Hi

S̃(Xij ) = −qj−iXij S̃(Hi) = −Hi

(Xij )
† = Xji (Hi)

† = Hi.

(23)

The τ -invariant one-dimensional module is generated by the CasimirK = C + qnB,
which satisfiesτ(K) = θ̃ (K) = S̃(K) = −K, K† = K. Note that the CasimirC + B is not
τ -invariant.

Thus we have obtained the quantum Lie algebraLq(gln) spanned by a basis{Xij |i, j =
1, . . . , n} ∪ {Hi |i = 1, . . . , n − 1} ∪ {K} which satisfies all the conditions of definition 3.

9.

To calculate the structure constants ofLq(gln) we use the formulae

Tij ◦ T̂kl = (πrk ⊗ π∗
sl)1(Tij )T̂rs

= qi

q − q−1
(δij δrkδsl − (Rππ∗)rif a(Rπ∗π )cfjk(Rπ∗π∗)sahb(Rπ∗π∗)bhcl) (24)

τ(T̄ ı̄ ) ◦ T̂kl = (πrk ⊗ π∗
sl)1(τ(T̄ ı̄ ))T̂rs = (π∗

r̄ k̄
⊗ πs̄l̄)1(T̄ ı̄ )T̂rs

= qn+1−j

q − q−1
(δij δrkδsl − (Rπ∗π∗)r̄̄f a(Rπ∗π∗)cf ı̄k̄(Rππ∗)s̄ahb(Rπ∗π )bhcl̄) (25)

which follow from (1 ⊗ 1)RT R = RT
12R

T
13R13R12. We also need the relation

Xii = −
n−1∑
k=1

qi−k q2k − 1

q2n − 1
Hk +

n−1∑
k=i

qi−kHk + qiK. (26)

Tedious but straightforward calculations give

[Hk ◦ Xij ] = lij (Hk)Xij [Xij ◦ Hk] = −rij (Hk)Xij

[Hi ◦ Hj ] = fij
kHk [Xij ◦ Xji ] = gij

kHk

[Xij ◦ Xkl ] = δjkδi 6=lNijlXil − δilδj 6=kMkijXkj

[K ◦ a] = [a ◦ K] = 0 ∀a ∈ Lq(gln).

(27)
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where

lij (Hk) = 1
2(1 + qn)(q−k(qδki − q−1δk,i−1) + qk−n(qδk,j−1 − q−1δkj )) (28)

rij (Hk) = −lj i(Hk) (29)

fij
k = δij

1
2(δk<i (q + q−1)(qk − q−k) + δk>i(q + q−1)(qn−k − q−n+k)

+δki(q
i+1 − q−i−1 + qn+1−i − q−n−1+i )) + δi,j−1

1
2(δk6i (q

−k − qk)

+δk>i(q
k−n − q−k+n)) + δi,j+1

1
2(δk<i(q

−k − qk) + δk>i (q
k−n − q−k+n))

(30)

gij
k = 1

2qi−j (δk<j (q
k − q−k) + δk>i (q

−k + q−k+n) − δk>j (q
−k + qk−n)) (31)

Nijl = 1
2q−j+1/2(1 + qn) Mkij = Ñkij . (32)

One notices several properties:
(1) For t = 0 (q = 1) these are the standardgln Lie bracket relations.
(2) The ‘quantum Cartan subalgebra’ generatorsHi have non-vanishing quantum Lie

brackets among themselves. However, it is still commutative in the sense that [Hi ◦ Hj ] =
[Hj ◦ Hi ].

(3) There are now two sets of roots,L = {lij } and R = {rij }, related by (29).
The combinationsaij = (lij + rij )/2 form the standardgln root lattice, i.e. they satisfy
aij + akl = δjkail + δilakj andaji = −aij . This feature is probably true only forg simply-
laced. It is known that the lattice structure is broken in the non-simply-laced cases of
g = C2 [4] and g = G2 [12].

(4) † is a quantum Lie algebra anti-automorphism, i.e.

[a† ◦ b†] = [b ◦ a]† ∀a, b ∈ Lq(g). (33)

(5) The quantum Lie bracket isq-antisymmetric in the sense that

[aq ◦ bq ] = −[b ◦ a]q ∀a, b ∈ Lq(g) (34)

where we have defined theq-conjugationa 7→ aq on Lq(g) as theq-linear map which
extends theq-conjugation∼ on C((t)) to Lq(g) by acting as the identity on the basis
elementsXij , Hi andK. (Note that this is not the same as theq-conjugation∼ on Uq(g)

which does not leaveLq(g) invariant.) Thisq-antisymmetry of the quantum Lie bracket
was observed also forLq(so5) [4] and Lq(G2) [12].

(6) The elementK decouples completely. ThusLq(gln) is not simple.

(7) The structure constants display the symmetrieslj i(Hk) = − ˜lij (Hk), rji(Hk) =
−r̃ij (Hk) and fij

k = −f̃ij
k, which were derived generally in [4] from the property (8)

of θ̃ .
(8) Forn = 3 these Lie bracket relations reproduce those forLq(sl3) given in [4] (after

replacingq ↔ 1/q and changing the normalization of the generators).

10.

To obtain Lq(sln) inside Uq(sln) one can repeat the above analyis, starting in section 5
with the universalR-matrix of Uq(sln) as given by Rosso [13]. Because the numerical
R-matrices (R-matrices evaluated in representations) which we used forgln are the same
as those forsln, the formulation of theτ -invariant (n2 − 1)-dimensional◦-module works
as before and now givesLq(sln). Also the structure constants forLq(sln) are given by
equations (27)–(32), simply droppingK.
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11.

We define the quantum Killing formB on Lq(sln) by

B(a, b) = −q−1 Trπ (S̃(a)bu) (35)

where Trπ denotes the trace over the vector representation andu is the element ofUq(sln)

expressing the square of the antipode asS2(a) = uau−1, ∀a ∈ Uq(g). This form
is proportional to that defined in [4]. It has as its defining property the ad-invariance
B(a, c ◦ b) = B(S̃(c) ◦ a, b). It is q-linear in its first argument and linear in the second and

satisfiesB(b, a) = B̃(a, b) = B(S̃(a), S(b̃)) = B(θ̃(a), θ̃(b)). As explained in [4], it is not
the restriction of Rosso’s form [14] onUq(g) to Lq(g). On our basis the Killing form takes
the values

B(Hi, Hk) = (q + q−1)δik − δi,k−1 − δi,k+1

B(Xij , Xkl) = δjkδli B(Hk, Xij ) = 0.
(36)

The ad-invariance of the Killing form leads to further relations among the structure constants
derived in [4]:

gijk = qj−i rij (Hk) fijk = fikj Nkij = −qj−iNijk. (37)

Here we have lowered indices with the Killing form, e.g.fijk = B(Hk, Hl)fij
l .
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